350 research outputs found

    Molecular Gas in the Perseus Cooling Flow Galaxy, NGC 1275

    Get PDF
    The central arcminute of the Perseus cooling flow galaxy, NGC 1275, has been mapped with the JCMT in 12CO(2-1) at 21 arcsec resolution, with detections out to at least 36 arcsec (12 kpc). Within the limits of the resolution and coverage, the distribution of gas appears to be roughly E-W, consistent with previous observations of CO, X-ray, H alpha, and dust emission. The total detected molecular hydrogen mass is ~ 1.6 x 10^10 solar masses, using a Galactic conversion factor. The inner central rotating disk is apparent in the data, but the overall distribution is not one of rotation. Rather, the line profiles are bluewards asymmetric, consistent with previous observations in HI and [OIII]. We suggest that the blueshift may be due to an acquired mean velocity of ~ 150 km/sec imparted by the radio jet in the advancing direction. Within the uncertainties of the analysis, the available radio energy appears to be sufficient, and the interpretation is consistent with that of Bohringer et al. (1993) for displaced X-ray emission. We have also made the first observations of 13CO(2-1) and 12CO(3-2) emission from the central 21 arcsec region of NGC 1275 and combined these data with IRAM data supplied by Reuter et al. (1993) to form line ratios over equivalent, well-sampled regions. An LVG radiative transfer analysis indicates that the line ratios are not well reproduced by a single value of kinetic temperature, molecular hydrogen density, and abundance per unit velocity gradient. At least two temperatures are suggested by a simple two-component LVG model, possibly reflecting a temperature gradient in this region.Comment: 12 pages, 5 figures, uses mn.sty, accepted for publication in MNRA

    SCUBA Observations of NGC 1275

    Full text link
    Deep SCUBA observations of NGC 1275 at 450 micron and 850 micron along with the application of deconvolution algorithms have permitted us to separate the strong core emission in this galaxy from the fainter extended emission around it. The core has a steep spectral index and is likely due primarily to the AGN. The faint emission has a positive spectral index and is clearly due to extended dust in a patchy distribution out to a radius of ∼\sim 20 kpc from the nucleus. These observations have now revealed that a large quantity of dust, ∼\sim 6 ×\times 107^7 M⊙M_\odot, 2 orders of magnitude larger than that inferred from previous optical absorption measurements, exists in this galaxy. We estimate the temperature of this dust to be ∼\sim 20 K (using an emissivity index of β\beta = 1.3) and the gas/dust ratio to be 360. These values are typical of spiral galaxies. The dust emission correlates spatially with the hot X-ray emitting gas which may be due to collisional heating of broadly distributed dust by electrons. Since the destruction timescale is short, the dust cannot be replenished by stellar mass loss and must be externally supplied, either via the infalling galaxy or the cooling flow itself.Comment: 13 pages, 4 figures. Figure 4 is colou

    Molecular gas in the Perseus cooling flow galaxy, NGC 1275

    Get PDF

    Discovery of PAHs in the Halo of NGC 5907

    Full text link
    We have used sensitive archival data from the Infrared Space Observatory (ISO) to make maps of the edge-on low SFR galaxy, NGC 5907, in 6 different MIR bands: LW2, LW5, LW6, LW7, LW8, and LW10, covering the spectrum from 6.5 to 15.0 microns and including several narrow bands that isolate the infrared aromatic spectral features commonly referred to as PAHs. Most of the MIR emission is dominated by PAHs and it is likely that emission from VSGs contribute only negligibly except in the broad IRAS-equivalent band. The flux ratios are typical of galaxies with low SFRs or quiesent regions within galaxies (e.g M~83) and a very high PAH/continuum ratio is observed. The PAH emission follows the CO distribution and also shows some correlation within the disk with the lambda 850 micron distribution. However, the PAH emission also reaches larger galactocentric radii than the CO and other correlations suggest that the PAHs are also more widespread. A significant new discovery is the presence of PAHs in the halo of the galaxy. In the narrow bands that isolate single PAH features, the emission shows structure similar to high latitude features seen in other galaxies in other tracers. The features extend as far as 6.5 kpc from the plane but scale heights of 3.5 kpc are more typical. The (lambda 11.3/lambda7.7) ratio also appears to increase with distance from the major axis. To our knowledge, this is the first time PAHs have been seen in the halo of an external galaxy. Just as significantly, they are seen in a low SFR galaxy, suggesting that strong SNe and winds are not necessary for these large molecules to reach high latitudes.Comment: A&A accept. 8 Sept. 05, 15 pages, 14 fig., pdf at www.astro.queensu.ca/~irwin/pub/ngc590

    Chandra Observation of the Edge-on Galaxy NGC 3556 (M 108): Violent Galactic Disk-halo Interaction Revealed

    Get PDF
    We present a 60 ks Chandra ACIS-S observation of the isolated edge-on spiral NGC 3556, together with a multiwavelength analysis of various discrete X-ray sources and diffuse X-ray features. Among 33 discrete X-ray sources detected within the I_B = 25 mag per square arcsec isophote ellipse of the galaxy, we identify a candidate for the galactic nucleus, an ultraluminous X-ray source that might be an accreting intermediate-mass black hole, a possible X-ray binary with a radio counterpart, and two radio-bright giant HII regions. We detect large amounts of extraplanar diffuse X-ray emission, which extends about 10 kpc radially in the disk and >~ 4 kpc away from the galactic plane. The diffuse X-ray emission exhibits significant substructures, possibly representing various blown-out superbubbles or chimneys of hot gas heated in massive star forming regions. This X-ray-emitting gas has temperatures in the range of ~ 2-7 x 10^6 K and has a total cooling rate of ~ 2 x 10^40 erg/s. The energy can be easily supplied by supernova blast-waves in the galaxy. These results demonstrate NGC 3556 as being a galaxy undergoing vigorous disk-halo interaction. The halo in NGC 3556 is considerably less extended, however, than that of NGC 4631, in spite of many similarities between the two galaxies. This may be due to the fact that NGC 3556 is isolated whereas NGC 4631 is interacting. Thus NGC 3556 presents a more pristine environment for studying the disk-halo interaction.Comment: 30 pages, 12 figures. To appear in ApJ. Please see http://www.astro.umass.edu/~wqd/papers/n3556/n3556.pdf for a high resolution versio
    • …
    corecore